SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Digital Image Processing (16ECE432) Year & Sem: IV-B.Tech & I-Sem **Course & Branch**: B.Tech - ECE **Regulation:** R16

UNIT –I INTRODUCTION TO DIGITAL IMAGE PROCESSING

1	a) List out the fundamental steps in digital image processing which can be applied to images.	[L1][CO1]	[6M]
	b) Define image processing and represent the digital images along with suitable example.	[L1][CO1]	[6M]
2	a) Explain the components of digital image processing along with the suitable block diagram.	[L2][CO1]	[6M]
	b) Define distance measures in digital image processing? Explain different types of distance measures.	[L2][CO1]	[6M]
3	a) List out the applications of digital image processing.	[L1][CO1]	[6M]
	b) Illustrate one of the applications of DIP with suitable diagrams.	[L2][CO1]	[6M]
4	a) Define the following terms: $N_4(p), N_D(p) \& N_8(p)$	[L1][CO1]	[6M]
	b) Discuss the following terms with example: Adjacency, 4-adjacency, 8-adjacency	[L2][CO1]	[6M]
5	Explain about image sampling and quantization process with proper steps.	[L2][CO1]	[12M]
6	Discuss the process of image sense and acquisition along with suitable diagrams.	[L2][CO1]	[12M]
7	Illustrate the following mathematical operations on digital images with relevant expressions and diagrams. a) Arithmetic operations b) Logical operations.	[L2][CO1]	[12M]
8	Explain the following mathematical operations on digital images. a) Array versus Matrix operations b) Linear versus Nonlinear Operations.	[L2][CO1]	[12M]
9	a) Explain the important terms related to Imaging Geometry with suitable applications.	[L2][CO1]	[6M]
L			

R16

	b) Determine the array product and matrix product for the following two images and summarize the result. $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \& B = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	[L5][CO1]	[6M]
10	a) Apply the set operation and logical operations in digital image processing along with suitable example.	[L3][CO1]	[6M]
	b) Evaluate the image addition, image subtraction and image multiplication operation for the following image and summarize the result.	[L5][CO1]	[6M]
	$f(x,y) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \& g(x,y) = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$		

UNIT –II IMAGE TRANSFORMS

1	a). Define Image Transform and Summarize its importance.	[L1][CO2]	[5M]
	b). List out the properties of 2D – Orthogonal Transform and 2D – Unitary transform.	[L1][CO2]	[7M]
2	a) Define 2D – Discrete Fourier Transform.	[L1][CO2]	[2M]
	b). List out the properties of 2D – Discrete Fourier Transform. Explain any one property with suitable equation.	[L2][CO2]	[10M]
3	a) Prove the Separable property of 2D – Discrete Fourier Transform with relevant expression.	[L5][CO2]	[6M]
	b) Prove the Periodicity property of 2D – Discrete Fourier Transform with relevant expression.	[L5][CO2]	[6M]
4	a) Determine the basis function of $2D$ – Discrete Fourier Transform when N = 4.	[L5][CO2]	[6M]
	b) Apply 2D – Discrete Fourier Transform for the following image.	[L3][CO2]	[6M]
	$f(x,y) = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 3 \\ 1 & 2 & 3 & 2 \end{bmatrix}$		
5	a) Determine the image basis function of 2D – Discrete Fourier Transform when N = 4.	[L5][CO2]	[6M]
	b) Apply 2D – Discrete Fourier Transform for the following image.	[L3][CO2]	[6M]
	$f(m,n) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		

Course Code: 16EC432

R16

		L	
6	a) Define 2D – Discrete Cosine Transform and discuss the properties of 2D-DCT.	[L1][CO2]	[6M]
	 b) Determine the image basis function of 2D – Discrete Cosine Transform when N = 4. 	[L5][CO2]	[6M]
7	a) Determine the image basis function of $2D$ – Discrete Cosine Transform when $N = 4$.	[L2][CO2]	[6M]
	b) Apply 2D – Discrete Cosine Transform for the following image. $f(m, n) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	[L3][CO2]	[6M]
8	a) Determine the image basis function of Walsh Transform when $N = 4$.	[L5][CO2]	[6M]
	b) Summarize the conditions for Perfect Transform?	[L2][CO2]	[6M]
9	a) Determine the image basis function of Hadamard Transform when $N = 4$.	[L5][CO2]	[6M]
	b) Outline that KL transform is an Optimal Transform.	[L2][CO2]	[6M]
10	a) Outline the steps to be followed to calculate KL transform.	[L2][CO2]	[6M]
	b) Apply the KL transform for the following image.	[L3][CO2]	[6M]
	$f(m,n) = \begin{bmatrix} 1 & 2\\ 2 & -1 \end{bmatrix}$		

UNIT – III IMAGE ENHANCEMENT

1	a). Define image enhancement and discuss the point operations in image enhancement?	[L1][CO3]	[5M]
	b). Illustrate the contrast stretching in image enhancement with suitable example.	[L2][CO3]	[7M]
2	a) Define negative image transformation and illustrate with suitable example.	[L1][CO3]	[5M]
	b). Summarize the Intensity level slicing operation and bit extraction operation in image enhancement with suitable example.	[L2][CO3]	[7M]
3	a) Define histogram and discuss the histogram four basic image types.	[L1][CO3]	[6M]
	b) Illustrate the procedure for histogram process and list out the uses of histogram.	[L2][CO3]	[6M]
4	a) Explain the mechanics of spatial filtering with suitable diagram.	[L2][CO3]	[6M]
	b) Illustrate the smoothing spatial filters along with the required expressions.	[L2][CO3]	[6M]
5	a) Illustrate the sharpening spatial filters along with the required expressions.	[L2][CO3]	[6M]

Т

R16

	b) Define the expression for first-order and second order derivative of a one- dimensional function $f(x)$ and outline its significance.	[L1][CO3]	[6M]
6	a) Define the image enhancement in frequency domain and give the expression	[L1][CO3]	[4M]
	b) Illustrate the smoothing filters in frequency domain along with the required expressions.	[L2][CO3]	[8M]
7	a) Compare the Low Pass Filter and High Pass Filter in image processing methods.	[L2][CO3]	[6M]
	b) Illustrate the sharpening filters in frequency domain along with the required expressions.	[L2][CO3]	[6M]
8	a) Define the expressions for LPF and HPF and Label the ideal characteristics.	[L1][CO3]	[4M]
	b) Explain about Homomorphic filtering with necessary equations.	[L2][CO3]	[8M]
9	a) Define the following terms: Saturation, Hue and Brightness.	[L1][CO3]	[6M]
	b) Label the CIE chromaticity diagram and discuss its significance.	[L1][CO3]	[6M]
10	a) Define the following terms: Radiance, Luminance and Brightness.	[L1][CO3]	[6M]
	b) Outline the importance of the Color Models and explain the RGB models.	[L2][CO3]	[6M]

UNIT – IV IMAGE DEGRADATION/RESTORATION

1	a) Identify parts of the degradation/restoration model in image processing and explain the function the each parts.	[L3][CO4]	[5M]
	b) List out the source of the noise in image processing and outline the spectrum of white noise.	[L1][CO4]	[7M]
2	a) Outline the different type of noise models and explain the Gaussian noise with proper PDF expression.	[L2][CO4]	[6M]
	b) Compare the Rayleigh noise and Erlang noise with proper PDF expression.	[L4][CO4]	[6M]
3	a) Summarize the importance of exponential noise, uniform noise and impulse noise along with PDF expression.	[L1][CO4]	[6M]
	b) Distinguish the Image Enhancement and Image Restoration.	[L4][CO4]	[6M]
4	a) Explain the inverse filtering for image restoration with relevant equations.	[L2][CO4]	[6M]
	b) Discuss the merits and demerits of inverse filtering.	[L5][CO4]	[6M]

Course Code: 16EC432

R16

5	a) Illustrate the Least Mean Square filters method for image restoration with suitable [L2][C0] examples.							
	b) Summarize the significance of the Arithmetic mean filter for image restoration.	[L1][CO4]	[4M]					
6	a) Outline the importance of Geometric mean filter and Harmonic mean filter for image restoration.	[L1][CO4]	[8M]					
	b) Summarize the role of the Impulse noise in image restoration.	[L1][CO4]	[4M]					
7	a) Illustrate the Constrained Least square restoration method for image restoration with suitable examples.	[L2][CO4]	[8M]					
	b) Summarize the significance of the Contra harmonic mean filter for image restoration.	[L3][CO4]	[6M]					
8	a) Define Image Segmentation and list out the applications of image segmentation.	[L1][CO4]	[4M]					
	b) Elaborate the several edge models for edge detection in image segmentation.	[L5][CO4]	[8M]					
9	a) Explain the threshold based segmentation methods with suitable examples.	[L2][CO4]	[8M]					
	b) Label the parts of Template matching and mention its function.	[L2][CO4]	[4M]					
10	a) Demonstrate Region based Approaches for image segmentation along with examples.	[L2][CO4]	[6M]					
	b) Outline the use of motion in segmentation	[L1][CO4]	[6M]					

UNIT – V IMAGE COMPRESSION

1	a) Define Image Compression and outline the importance of the image compression to the industry.	[L1][CO5]	[5M]
	b) Outline the function of the Image Compression Models with suitable block diagram.	[L1][CO5]	[7M]
2	a) Define Data, Information & Redundancy.	[L1][CO5]	[6M]
	b) Explain the coding redundancy and spatial/Temporal redundancy with suitable examples.	[L2][CO5]	[6M]
3	a) Define Huffman coding.	[L1][CO5]	[2M]
	b) Illustrate the procedure of the Huffman coding along with suitable example.	[L2][CO5]	[10M]
4	a) Evaluate the coding efficiency for the following probabilities based on Huffman coding.	[L5][CO5]	[7M]

Course Code: 16EC432

а3	<i>a</i> 4	a5	а6	

	Symbol	a1	а2	а3	a4	<i>a</i> 5	а6			
	Probability	0.4	0.3	0.1	0.1	0.06	0.04			
	b) Illustrate the	e procedure o	of the Arit	hmetic cod	ling along w	vith suitabl	e examp	le.	[L2][CO5]	[5M]
5	a) Demonstrate the procedure of the bit plane coding along with suitable example.									[4M]
	b) Evaluate the coding.	e coding effi	iciency fo	r the follo	wing proba	bilities bas	sed on H	uffman	[L5][CO5]	[8M]
	Symbol	<i>m</i> 1	<i>m</i> 2	<i>m</i> 3	m4	<i>m</i> 5	<i>m</i> 6			
	Probability	0.5	0.2	0.1	0.1	0.06	0.04			
6	a) Illustrate the	procedure o	f the varia	ble length	coding alon	ng with suit	table exa	mple.	[L2][CO5]	[6M]
	b) Compare the	variable len	gth coding	g and arithr	netic coding	g.			[L4][CO5]	[6M]
7	a) Outline the each parts of th			n coding i	n image co	mpression	and exp	lain the	[L2][CO5]	[6M]
	b) Classify ima	age compress	sion stand	ards.					[L4][CO5]	[6M]
8	a) Compare the	lossless con	npression	and lossy c	compression	1.			[L2][CO5]	[6M]
	b) Summarize t	he role of JF	PEG and	PNG for in	mage comp	ression.			[L2][CO5]	[6M]
9	a) Outline the in	mportance o	f DICOM	and TIFF	for image co	ompression	1.		[L2][CO5]	[6M]
	b) Demonstrate the steps for Measuring Image Information in image compression techniques.								[L2][CO5]	[6M]
10	a) Summarize the role of MPEG and SVG for image compression.								[L2][CO5]	[4M]
	b) Evaluate the coding efficiency for the following probabilities based on Huffman coding.							[L5][CO5]	[8M]	
	Symbol	<i>m</i> 1	<i>m</i> 2	<i>m</i> 3	<i>m</i> 4	<i>m</i> 5	<i>m</i> 6			
	Probability	0.1	0.2	0.1	0.1	0.25	0.25			
		1		I		I	I	J		

PREPARED BY

•

R16

1.Dr. P. G. KUPPUSAMY **Professor/ECE**

2. Dr. K. ELANGOVAN **Professor/ECE**